Blog Archive

Search This Blog

Tuesday, July 25, 2017

PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

Publication date: Available online 24 July 2017
Source:Toxicology Letters
Author(s): Evelyne Gozal, Cynthia J. Miller, Maurice Dematteis, Leroy R. Sachleben, Avital Schurr, Madhavi J. Rane
Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death.Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O2). Hypoxia, at 24h 0.1% O2, induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types.N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression.We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies.



from # All Medicine by Alexandros G. Sfakianakis via alkiviadis.1961 on Inoreader http://ift.tt/2tA7n4M

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Blog Archive

Pages

   International Journal of Environmental Research and Public Health IJERPH, Vol. 17, Pages 6976: Overcoming Barriers to Agriculture Green T...