Publication date: Available online 24 November 2018
Source: NeuroImage
Author(s): Misun Kim, Eleanor A. Maguire
Abstract
Recent human functional magnetic resonance imaging (fMRI) and animal electrophysiology studies suggest that grid cells in entorhinal cortex are an efficient neural mechanism for encoding knowledge about the world, not only for spatial location but also for more abstract cognitive information. The world, be it physical or abstract, is often high-dimensional, but grid cells have been mainly studied on a simple two-dimensional (2D) plane. Recent theoretical studies have proposed how grid cells encode three-dimensional (3D) physical space, but it is unknown whether grid codes can be examined non-invasively in humans. Here, we investigated whether it was feasible to test different 3D grid models using fMRI based on the direction-modulated property of grid signals. In doing so, we developed interactive software to help researchers visualize 3D grid fields and predict grid activity in 3D as a function of movement directions. We found that a direction-modulated grid analysis was sensitive to one type of 3D grid model – a face-centred cubic (FCC) lattice model. As a proof of concept, we searched for 3D grid-like signals in human entorhinal cortex using a novel 3D virtual reality paradigm and a new fMRI analysis method. We found that signals in the left entorhinal cortex were explained by the FCC model. This is preliminary evidence for 3D grid codes in the human brain, notwithstanding the inherent methodological limitations of fMRI. We believe that our findings and software serve as a useful initial stepping-stone for studying grid cells in realistic 3D worlds and also, potentially, for interrogating abstract high-dimensional cognitive processes.
from Imaging via a.sfakia on Inoreader https://ift.tt/2QiSJ0q
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.