Publication date: Available online 8 November 2018
Source: NeuroImage
Author(s): Luke Baxter, Sean Fitzgibbon, Fiona Moultrie, Sezgi Goksan, Mark Jenkinson, Stephen Smith, Jesper Andersson, Eugene Duff, Rebeccah Slater
Abstract
The infant brain is unlike the adult brain, with considerable differences in morphological, neurodynamic, and haemodynamic features. As the majority of current MRI analysis tools were designed for use in adults, a primary objective of the Developing Human Connectome Project (dHCP) is to develop optimised methodological pipelines for the analysis of neonatal structural, resting state, and diffusion MRI data. Here, in an independent neonatal dataset we have extended and optimised the dHCP fMRI preprocessing pipeline for the analysis of stimulus-response fMRI data. We describe and validate this extended dHCP fMRI preprocessing pipeline to analyse changes in brain activity evoked following an acute noxious stimulus applied to the infant's foot. We compare the results obtained from this extended dHCP pipeline to results obtained from a typical FSL FEAT-based analysis pipeline, evaluating the pipelines' outputs using a wide range of tests. We demonstrate that a substantial increase in spatial specificity and sensitivity to signal can be attained with a bespoke neonatal preprocessing pipeline through optimised motion and distortion correction, ICA-based denoising, and haemodynamic modelling. The improved sensitivity and specificity, made possible with this extended dHCP pipeline, will be paramount in making further progress in our understanding of the development of sensory processing in the infant brain.
from Imaging via a.sfakia on Inoreader https://ift.tt/2QwJiHJ
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.