Blog Archive

Search This Blog

Thursday, December 7, 2017

A Novel DBSCAN Based on Binary Local Sensitive Hashing and Binary-KNN Representation

We revisit the classic DBSCAN algorithm by proposing a series of strategies to improve its robustness to various densities and its efficiency. Unlike the original DBSCAN, we first use the binary local sensitive hashing (LSH) which enables faster region query for the neighbors of a data point. The binary data representation method based on neighborhood is then proposed to map the dataset into the Hamming space for faster cluster expansion. We define a core point based on binary influence space to enhance the robustness to various densities. Also, we propose a seed point selection method, which is based on influence space and neighborhood similarity, to select some seed points instead of all the neighborhood during cluster expansion. Consequently, the number of region queries can be decreased. The experimental results show that the improved algorithm can greatly improve the clustering speed under the premise of ensuring better algorithm clustering accuracy, especially for large-scale datasets.

from # All Medicine by Alexandros G. Sfakianakis via alkiviadis.1961 on Inoreader http://ift.tt/2BfbQBs

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Blog Archive

Pages

   International Journal of Environmental Research and Public Health IJERPH, Vol. 17, Pages 6976: Overcoming Barriers to Agriculture Green T...