Abstract
Image segmentation is an essential step for many computer vision tasks. Evaluating the quality of image segmentations becomes indispensable for choosing an appropriate output of the image segmentation algorithms. To quantitatively evaluate the segmentation quality, various evaluation measures have been proposed to produce a quality map, and a spatial pooling algorithm is followed to combine the quality map into a single quality score. In this paper, we propose two pooling strategies instead of using the conventional spatial average operation. By assigning perceptual meaningful weights to the quality maps, we obtain evaluation measures that are correlated with the human perception of segmentation quality. Specifically, a quality-based and a visual importance-based pooling strategies are designed and tested on some popular evaluation measures, respectively. To the best of our knowledge, this is the first work that applies perceptual pooling strategies for segmentation evaluation. Extensive experiments are conducted on a subjective evaluation benchmark and the Berkeley Segmentation Dataset (BSDS500). The results indicate that the proposed strategies can improve the performance of existing evaluation measures and produce a more perceptually meaningful judgment on the segmentation quality.
from # All Medicine by Alexandros G. Sfakianakis via alkiviadis.1961 on Inoreader http://ift.tt/2m79I4V
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.