Abstract
Background
Therapeutic hypothermia is the standard-of-care treatment for infants diagnosed with moderate-to-severe hypoxic–ischemic encephalopathy (HIE). MRI for assessing brain injury is usually performed after hypothermia because of logistical challenges in bringing acutely sick infants receiving hypothermia from the neonatal intensive care unit (NICU) to the MRI suite. Perhaps examining and comparing early cerebral oxygen metabolism disturbances to those after rewarming will lead to a better understanding of the mechanisms of brain injury in HIE and the effects of therapeutic hypothermia.
Objective
The objectives were to assess the feasibility of performing a novel T2-relaxation under spin tagging (TRUST) MRI technique to measure venous oxygen saturation very early in the time course of treatment, 18–24 h after the initiation of therapeutic hypothermia, to provide a framework to measure neonatal cerebral oxygen metabolism noninvasively, and to compare parameters between early and post-hypothermia MRIs.
Materials and methods
Early (18–24 h after initiating hypothermia) MRIs were performed during hypothermia treatment in nine infants with HIE (six with moderate and three with severe HIE). Six infants subsequently had an MRI after hypothermia. Mean values of cerebral blood flow, oxygen extraction fraction, and cerebral metabolic rate of oxygen from MRIs during hypothermia were compared between infants with moderate and severe HIE; and in those with moderate HIE, we compared cerebral oxygen metabolism parameters between MRIs performed during and after hypothermia.
Results
During the initial hypothermia MRI at 23.5±5.2 h after birth, infants with severe HIE had lower oxygen extraction fraction (P=0.04) and cerebral metabolic rate of oxygen (P=0.03) and a trend toward lower cerebral blood flow (P=0.33) compared to infants with moderate HIE. In infants with moderate HIE, cerebral blood flow decreased and oxygen extraction fraction increased between MRIs during and after hypothermia (although not significantly); cerebral metabolic rate of oxygen (P=0.93) was not different.
Conclusion
Early MRIs were technically feasible while maintaining hypothermic goal temperatures in infants with HIE. Cerebral oxygen metabolism early during hypothermia is more disturbed in severe HIE. In infants with moderate HIE, cerebral blood flow decreased and oxygen extraction fraction increased between early and post-hypothermia scans. A comparison of cerebral oxygen metabolism parameters between early and post-hypothermia MRIs might improve our understanding of the evolution of HIE and the benefits of hypothermia. This approach could guide the use of adjunctive neuroprotective strategies in affected infants.
from Imaging via a.sfakia on Inoreader https://ift.tt/2ANbIrs
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.