Publication date: Available online 16 November 2018
Source: NeuroImage
Author(s): Manasij Venkatesh, Joseph Jaja, Luiz Pessoa
Abstract
Human functional Magnetic Resonance Imaging (fMRI) data are acquired while participants engage in diverse perceptual, motor, cognitive, and emotional tasks. Although data are acquired temporally, they are most often treated in a quasi-static manner. Yet, a fuller understanding of the mechanisms that support mental functions necessitates the characterization of dynamic properties. Here, we describe an approach employing a class of recurrent neural networks called reservoir computing, and show the feasibility and potential of using it for the analysis of temporal properties of brain data. We show that reservoirs can be used effectively both for condition classification and for characterizing lower-dimensional "trajectories" of temporal data. Classification accuracy was approximately 90% for short clips of "social interactions" and around 70% for clips extracted from movie segments. Data representations with 12 or fewer dimensions (from an original space with over 300) attained classification accuracy within 5% of the full data. We hypothesize that such low-dimensional trajectories may provide "signatures" that can be associated with tasks and/or mental states. The approach was applied across participants (that is, training in one set of participants, and testing in a separate group), showing that representations generalized well to unseen participants. Taken together, we believe the present approach provides a promising framework to characterize dynamic fMRI information during both tasks and naturalistic conditions.
from Imaging via a.sfakia on Inoreader https://ift.tt/2OMrmXO
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.