Blog Archive

Search This Blog

Thursday, December 20, 2018

Influence of residual thermal stresses on the edge chipping resistance of PFM and veneered zirconia structures: Experimental and FEA study

Publication date: Available online 20 December 2018

Source: Dental Materials

Author(s): Carina B. Tanaka, Rafael Y. Ballester, Grace M. De Souza, Yu Zhang, Josete B.C. Meira

Abstract
Objective

Chipping fractures of the veneering porcelain are frequently reported for veneered all-ceramic crowns. In the present study, the edge chipping test is used to measure the toughness and the edge chipping resistance of veneered zirconia and porcelain-fused-to-metal (PFM). The aim is to describe an edge chipping method developed with the use of a universal testing machine and to verify the accuracy of this method to determine the influence of residual thermal stresses on the chipping fracture resistance of veneering porcelain. A finite element analysis (FEA) was used to study the residual stress profiles within the veneering porcelain.

Methods

Veneered zirconia and PFM bar specimens were subjected to either a fast or a slow cooling protocol. The chipping resistances were measured using the edge chipping method. The load was applied in two different directions, in which the Vickers indenter was placed in the veneering porcelain either parallel or perpendicular to the veneer/framework interface. The mean edge chipping resistance (ReA) and fracture toughness (KC) values were analysed. ReA was calculated by dividing the critical force to cause the chip by the edge distance. KC was given by a fracture analysis that correlates the critical chipping load (FC) regarding edge distance (d) and material toughness via KC = FC/(βd1.5).

Results

The ReA revealed similar values (p > 0.005) of chipping resistance for loads applied in the parallel direction regardless of framework material and cooling protocol. For loads applied in the perpendicular direction to the veneer/framework interface, the most chip resistant materials were slow cooled veneered zirconia (251.0 N/mm) and the PFM fast cooled (190.1 N/mm). KC values are similar to that for monolithic porcelain (0.9 MPa.√m), with slightly higher values (1.2 MPa.√m) for thermally stressed PFM fast cooled and veneered zirconia slow cooled groups.

Significance

The developed and reported edge chipping method allows for the precise alignment of the indenter in any predetermined distance from the edge. The edge chipping method could be useful in determining the different states of residual thermal stresses on the veneering porcelain.



from OroFacial via a.sfakia on Inoreader https://ift.tt/2A2hZif

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Blog Archive

Pages

   International Journal of Environmental Research and Public Health IJERPH, Vol. 17, Pages 6976: Overcoming Barriers to Agriculture Green T...