Blog Archive

Search This Blog

Monday, November 20, 2017

Salient object detection using local, global and high contrast graphs

Abstract

In this paper, we propose a novel multi-graph-based method for salient object detection in natural images. Starting from image decomposition via a superpixel generation algorithm, we utilize color, spatial and background label to calculate edge weight matrix of the graphs. By considering superpixels as the nodes and region similarities as the edge weights, local, global and high contrast graphs are created. Then, an integration technique is applied to form the saliency maps using degree vectors of the graphs. Extensive experiments on three challenging datasets show that the proposed unsupervised method outperforms the several different state-of-the-art unsupervised methods.



from # All Medicine by Alexandros G. Sfakianakis via alkiviadis.1961 on Inoreader http://ift.tt/2zYEymG

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Blog Archive

Pages

   International Journal of Environmental Research and Public Health IJERPH, Vol. 17, Pages 6976: Overcoming Barriers to Agriculture Green T...