Blog Archive

Search This Blog

Monday, September 25, 2017

Impacts of Microphysics Schemes and Topography on the Prediction of the Heavy Rainfall in Western Myanmar Associated with Tropical Cyclone ROANU (2016)

The impacts of different microphysics and boundary schemes and terrain settings on the heavy rainfall over western Myanmar associated with the tropical cyclone (TC) ROANU (2016) are investigated using the Weather Research and Forecasting (WRF) model. The results show that the microphysics scheme of Purdue Lin (LIN) scheme produces the strongest cyclone. Six experiments with various combinations of microphysics and boundary schemes indicated that a combination of WRF Single-Moment 6-class (WSM6) scheme and Mellor-Yamada-Janjic (MYJ) best fits to the Joint Typhoon Warning Center (JTWC) data. WSM6-MYJ also performs the best for the track and intensity of rainfall and obtains the best statistics skill scores in the range of maximum rainfall intensity for 48-h. Sensitivity experiments on different terrain settings with Normal Rakhine Mountain (NRM), with Half of Rakhine Mountain (HRM), and Without Rakhine Mountain (WoRM) are designed with the use of WSM6-MYJ scheme. The track of TC ROANU moved northwestward in WoRM and HRM. Due to the presence of Rakhine Mountain, TC track moved into Myanmar and the peak rainfall occurred on the leeward side of the Mountain. In the absence of Rakhine Mountain, a shift in peak rainfall was observed in north side of the Mountain.

from # All Medicine by Alexandros G. Sfakianakis via alkiviadis.1961 on Inoreader http://ift.tt/2fLLPNX

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Blog Archive

Pages

   International Journal of Environmental Research and Public Health IJERPH, Vol. 17, Pages 6976: Overcoming Barriers to Agriculture Green T...